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Abstract Because of their high thermal conductivi-
ties, carbon nanotubes (CNT) have promising potential
in development of fundamentally new composites. To
study the influence of CNTs distribution on the overall
properties of a composite, the modeling of a Represen-
tative Volume Element (RVE) including a large number
of CNTs that are randomly distributed and oriented is
necessary. However, analysis of such a RVE using stan-
dard numerical methods faces two severe difficulties,
namely the discretization of the geometry and a very
large computational scale. In this paper, the first diffi-
culty is alleviated by employing the Hybrid Boundary
Node Method (HdBNM), which is a form of the bound-
ary type meshless methods. To overcome the second
difficulty, the Fast Multipole Method (FMM) is com-
bined with the HdBNM to solve a simplified mathemat-
ical model. RVEs containing various numbers of CNTs
with different lengths, shapes and alignments have been
analyzed, resulting in valuable insights gained into the
thermal behavior of the composite material.
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1 Introduction

In recent years, various aspects of the carbon nanotu-
bes (CNT) such as their production, physical properties
and possible applications have been intensively investi-
gated [1,2]. Due to their near-perfect nanostructures, the
CNTs possess exceptional physical properties such as
superior thermal and electrical conductivities and high
stiffness and strength. Because of such remarkable prop-
erties, the CNT material is an ideal candidate for a
wide range of technological applications. One of the
most intriguing applications is the use of CNTs, as small
volume fraction filler, in nanotube-reinforced polymers.
CNT-based composites offer significant improvements
to structural properties over those of their base poly-
mers. It has been demonstrated that with only 1%
(weight fraction) of CNTs added to a matrix material,
the stiffness of a resulting composite may increase as
high as between 36 and 42% and the tensile strength up
to 25% [3]. In the work of Biercuk et al. [4], samples of
industrial epoxy loaded with 1 wt% single-walled CNTs
showed a 70% increase in heat conductivity at 40 K. The
percentage increase may further rise to 125% at room
temperature.

Numerical simulations can aid in the understanding of
the relationship between the geometrical characteristic
(e.g. nanotube orientation) and the properties of nano-
composites. This may then allow the determination and
optimization of different processing method in manu-
facturing the nanocomposite materials. At the nanoscale
level, atomistic or molecular dynamics (MD) may have
been the “natural” simulation methods which have pro-
vided abundant results needed for understanding the
thermal, mechanical and electrical behaviors of nano-
composite [5]. However, due to limitations in current
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computing power, such simulations are necessarily lim-
ited to single individual pure CNTs or very small scales
for CNT-composite such as a representative volume ele-
ment (RVE) containing only single short CNT. To study
how the distribution of CNTs influences the equivalent
properties of a composite, a RVE containing a large
number of CNTs that are randomly distributed and ori-
ented has to be modeled. This is because a real CNT-
composite contains CNTs that are not uniform in size
and shape. The CNTs may be straight, twisted and curled
or in the form of ropes and their distribution and ori-
entation in the matrix may be nonuniform, unidirec-
tional or random. Even with the most superior com-
puter resources available in the world, computation of
such a RVE by MD is almost impossible. Liu et al. [6]
has demonstrated that the use of atomistic or molecular
dynamics (MD) simulations is inevitable for the analysis
of such nanomaterials in order to study the local load
transfers, interface properties, or failure modes at the
nanoscale. However, for a global analysis of the effects
of CNTs configuration on the overall properties of a
composite, they suggested a continuum model with the
physical behaviors of the composite governed by con-
tinuum equations such as Laplace’s equation for ther-
mal problems and Lame–Navier equations for elastic
problems.

This study seeks to gain useful insights into the ther-
mal properties of CNT-based composites through a
numerical simulation based on 3D potential theory. The
equivalent heat conductivity of a CNT-based composite
is evaluated using a RVE.

For the analysis of a RVE which contains not only one
but also many randomly distributed CNTs, the imple-
mentation of standard numerical solution techniques
such as FEM or BEM may face severe difficulties in
the discretization of the solution domain. This is espe-
cially so for FEM models in which the meshing of the
solid geometries within CNT-reinforced polymers may
be tedious and extremely difficult. To alleviate this diffi-
culty, the hybrid boundary node method (HdBNM) may
be used [7,8]. By combining a modified functional with
the moving least squares (MLS) approximation, the
HdBNM is a truly meshless, boundary-only method. We
have combined the HdBNM with a multi-domain solver
and applied the combined approach to perform some
preliminary computations and investigate the influences
of the CNT length, curvature and dispersion on the
equivalent thermal properties of the composites
[9,10].

However, these computations are limited to relatively
small scales, as usually only single or several but shorter
CNTs were considered. Due to the very thin and slen-
der structure of the CNTs, a large number of nodes are

required to discretize them in order to capture the steep
gradients. Moreover, in a multi-domain solver, at each
node on the interface of a CNT with the host polymer,
both temperature and normal flux are unknown. This
gives rise to a considerable increase in the total degrees
of freedom in the overall system of equations.

Preliminary studies have shown that temperatures
within the entire CNT are almost uniform due to the
huge difference of heat conductivity between the CNT
and the host polymer. Based on this observation, we
have proposed a simplified mathematical model in which
each CNT is considered as a heat superconductor hav-
ing uniform temperature within the entire body [11].
As a result, the total number of degrees of freedom is
reduced by nearly half. This allows for an increase in
the number of CNTs within a RVE that can be analyzed
using commonly available computer resources. The sim-
plified model has been rigorously tested and validated
using benchmark examples.

Nevertheless, even with the simplified model, both
the memory requirements and the computational scale
are still of O(N2) [or worse O(N3) if a direct solver
such as the Gauss elimination technique is used]. Here
N stands for the total number of degrees of freedom.
To carry out the analysis of a realistic RVE model, an
efficient technique for further reducing the computa-
tional requirements is necessary. This may be achieved
by using the Fast Multipole Method (FMM).

The FMM was introduced by Rokhlin [12], and devel-
oped by Greengard [13] as an algorithm for the rapid
evaluation of Coulombic interactions in a large-scale
ensemble of particles. In their method, multipole
moments are used to represent distant particle groups,
a local expansion to evaluate the contribution from dis-
tant particles in the form of a series, and a hierarchical
decomposition of the domain to carry out efficient and
systematic grouping of the particles. The FMM reduces
both memory size and computational scale from O(N2)

to O(N), thus enabling scientific and engineering com-
putations that were previously impossible.

The FMM has been applied to a variety of computa-
tional methods. Application of the FMM for accelerat-
ing BEM computation has been investigated by many
researchers [14,15]. We have combined the FMM with
the HdBNM for large-scale computation of potential
problems [16]. In this paper, the FMM techniques are
implemented into the HdBNM to solve the simplified
model for the simulation of thermal behavior of CNT-
based composites. RVEs containing CNTs with differ-
ent lengths, shapes and alignments have been studied.
It is found that some specific alignments may signifi-
cantly increase the equivalent heat conductivity of the
composites.
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2 A simplified mathematical model for CNT
composites

As mentioned in the introduction, the unusually high
thermal conductivity of the CNTs (as compared with the
polymer) makes the temperature distribution within an
individual CNT almost uniform. This feature allows us to
simplify the modeling of the CNT-based composites. In
this section, the formulations for the simplified mathe-
matical model are developed, where only single domain,
namely the polymer matrix is modeled. Each CNT is
treated as a heat superconductor with one constant tem-
perature constrained at its surface. A similar assumption
can be found in the rigid-line inclusion model given in
[17].

Assume that a RVE contains n CNTs that are dis-
tributed in a polymer matrix. It is also assumed that the
matrix is continue of linear, isotropic and homogenous
materials with given heat conductivities. A steady state
heat conduction problem governed by Laplace’s equa-
tion with proper boundary conditions is considered.

The HdBNM is based on a modified variational prin-
ciple, in which there are three independent variables,
namely:

– temperature within the domain, φ;
– boundary temperature, φ̃;
– boundary normal heat flux, q̃.

Suppose further that N nodes are randomly distrib-
uted on the surfaces (including the interfaces with CNTs)
of the polymer domain. The temperature within the
domain is approximated using fundamental solutions as

φ =
N∑

J=1

φs
JxJ (1)

with the normal heat flux is given by

q = −κ

N∑

J=1

∂φs
J

∂n
xJ (2)

where φs
J is the fundamental solution with the source at

a node sJ , κ is the heat conductivity and xJ are unknown
parameters. For 3D steady state heat conduction prob-
lems, the fundamental solution can be written as

φs
J = 1

κ

1
4πr(Q, sJ)

(3)

where Q is a field point; r(Q, sJ) is the distance between
Q and sJ .

The boundary temperature and normal heat flux are
approximated by moving least square (MLS) approxi-
mation, that is,

φ̃(s) =
N∑

J=1

�J(s)φ̂J (4)

and

q̃(s) =
N∑

J=1

�J(s)q̂J (5)

In the foregoing equations, �J(s) is the shape func-
tion of MLS approximation; φ̂J and q̂J are nodal values
of temperature and normal flux, respectively.

For the polymer domain, the following set of HdBNM
equations can be written:

⎡

⎢⎢⎢⎣

U00 U01 · · · U0n

U10 U11 · · · U1n
...

...
. . .

...
Un0 Un1 · · · Unn

⎤

⎥⎥⎥⎦

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x0
x1
...

xn

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

H0φ̂0

H1φ̂1
...

Hnφ̂n

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(6)

⎡

⎢⎢⎢⎣

V00 V01 · · · V0n

V10 V11 · · · V1n
...

...
. . .

...
Vn0 Vn1 · · · Vnn

⎤

⎥⎥⎥⎦

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x0
x1
...

xn

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

H0q̂0
H1q̂1

...
Hnq̂n

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
(7)

where subscripts 0 and k (= 1, . . . , n), stand for quan-
tities exclusively associated with the polymer domain,
and quantities associated with its interface with the kth
nanotube, respectively. The sub-matrices [U], [V] and
[H] are given by

UIJ =
∫

�I

φs
JvI(Q)d� (8)

VIJ = −κ

∫

�I

∂φs
J

∂n
vI(Q)d� (9)

HIJ =
∫

�I

�J(s)vI(Q)d� (10)

where �I is a regularly shaped local region around a col-
location node sI , vI is a weight function and s is a field
point on the boundary. For full details of HdBNM, refer
to [8].

By combining Eqs. (6) and (7), we obtain the follow-
ing equation:
⎡

⎢⎢⎢⎣

A00 A01 · · · A0n

U10 U11 · · · U1n
...

...
. . .

...
Un0 Un1 · · · Unn

⎤

⎥⎥⎥⎦

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x0
x1
...

xn

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

H0d0

H1φ̂1
...

Hnφ̂n

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
(11)

where, each row of sub-matrices [A0k], k = 0, 1, . . . , n,
is supplied identically from that in [U0k] or [V0k] accord-
ing to the boundary condition at the corresponding node,
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and the corresponding term of {d0} comes from
{
φ̂0

}
or

{
q̂0

}
.

Further suppose that mk nodes are located at the
interface of kth nanotube with the polymer with an
unknown constant temperature φk

c , that is,
{
φ̂k

}
= {1}kφk

c (12)

where
{
φ̂k

}
are the nodal values of temperature at the

interface; {1}k is a column vector of mk dimensions with
all the elements equal 1. Inserting Eq. (12) into Eq. (11)
for all interfaces, the following equation is obtained:

⎡

⎢⎢⎢⎣

A00 A01 · · · A0n 0 · · · 0
U10 U11 · · · U1n −H1{1}1 · · · 0

...
...

. . .
...

...
. . .

...
Un0 Un1 · · · Unn 0 · · · −Hn{1}n

⎤

⎥⎥⎥⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0
x1
...

xn

φ1
c
...

φn
c

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

H0d0
0
...
0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
(13)

In the above set of equations, there are n (the num-
ber of CNTs) more unknowns than the number of equa-
tions. This is because we have introduced one additional
unknown, i.e. the constant temperature, for each CNT.
In order to solve Eq. (13), n more equations are needed.
These equations can be obtained from the law of con-
servation of energy, which states that, for steady state
heat conduction, the rate of thermal energy flowing into
a CNT must equal that flowing out. Thus, the following
integral relation may be imposed on the surface of kth
CNT,
∫

Ck

qd� = 0 (14)

where Ck represents the outer surface of the kth CNT.
Substituting Eq. (2) into (14) and omitting the common
factor κ , we obtain

N∑

J=1

∫

Ck

∂φs
J

∂n
d� xJ = 0 (15)

In Eq. (15), Ck is a closed surface. The following inte-
gral identity holds [18]:
∫

Ck

∂φs
J

∂n
d� =

{
1, ∀sJ ∈ Ck
0, ∀sJ /∈ Ck

(16)

Therefore, the coefficients in Eq. (15) are either 1
or 0. For nodes located on the surface of the kth CNT,
they are 1. Otherwise they are 0. Appending Eq. (15)
to Eq. (13) for all CNTs, we obtain the final set of alge-
braic equations system which may be used to uniquely
determine the unknown parameter x.

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

A00 A01 · · · A0n 0 · · · 0
U10 U11 · · · U1n −H1{1}1 · · · 0

0 {1}T
1 · · · 0 0 · · · 0

...
...

. . .
...

...
. . .

...
Un0 Un1 · · · Unn 0 · · · −Hn{1}n

0 0 · · · {1}T
n 0 · · · 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0
x1
...

xn

φ1
c
...

φn
c

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

H0d0
0
0
...
0
0

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(17)

The total number of degrees of freedom in Eq. (17) is
relatively very small when compared with that of a full
model (multi-domain solver, see [9]). For each CNT,
only one algebraic equation is added. Moreover, as the
coefficients of these algebraic equations are either 1 or
0, requiring no tedious computation, both the CPU time
and memory usage can be significantly reduced.

The set of Eq. (17) is solved for the unknown param-
eters x, and then, by back-substitution into Eqs. (6) and
(7), the boundary unknowns are obtained either on the
interfaces or the external boundary surfaces. As dem-
onstrated, the HdBNM is a boundary-only meshless
approach. No boundary elements are used for either
interpolation or integration purposes. Therefore, the dis-
cretization task may be alleviated to a large extent for
complicated geometries.

3 Accelerating equation solution by FMM

The size of the coefficient matrix in Eq. (17) is domi-
nated by sub-matrices [A0k] and [Uki], k = 1, . . . , n, i =
0, 1, . . . , n. Since these sub-matrices are unsymmetrical
and fully populated, solving Eq. (17) by an iterative
solver requires O(N2) operations. In this paper, we use
the restarted preconditioned GMRES for solving Eq.
(17). The most time-consuming aspect of an iterative
method when employed for solving a system of linear
equations is the matrix-vector product in each iteration
step. By taking an iteration vector x′ into account, the
product of a row of the coefficient matrix in Eq. (17) and
the guess vector x′ can be expressed in terms of one of
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the following four sums:

N∑

J=1

∫

�I

φs
JvI(Q)x′

Jd� (18)

N∑

J=1

∫

�I

−κ
∂φs

J

∂n
vI(Q)x′

Jd� (19)

N∑

J=1

∫

�I

φs
JvI(Q)x′

Jd� + φ′
c

mk∑

J

HIJ (20)

mk∑

J

x′
J (21)

The sums in (18) and (19) are related to a node located
on the external boundary and prescribed with temper-
ature and normal flux, respectively. The sum in (20) is
related to a node located at the interface of the k-th
CNT with the polymer domain, and the expression in
(21) to the kth uniform temperature constraint.

The computational costs for the second term in sums
(20) and (21) are trivial, and thus can be ignored. The
summations (18) and (19) are accelerated by FMM with
of O(N) operation. The FMM method was first intro-
duced as a fast solution method in astrophysics for sim-
ulation of N-body systems in which the interactions
between the bodies are gravitational. Because of the
computational analogy between the force evaluation
for the N-body problem and the matrix–vector multi-
plication, the FMM is widely employed in conjunction
with iterative solvers to accelerate the solutions of ellip-
tic partial differential equations (PDEs) through the
boundary integral equation (BIE).

3.1 Cell to cell algorithm

The FMM mainly uses three addition theorems which
are briefly explained below.

First addition theorem: Define solid spherical har-
monics Rm

n (r) and Sm
n (r) as [14]

Rm
n (r) = 1

(n + m)!Pm
n (cos α)eimβrn

Sm
n (r) = (n − m)!Pm

n (cos α)eimβ 1
rn+1

Here (r, α, β) is spherical coordinates of the point r;
Pm

n (cos α) is the associated Lengendre function of inte-
ger order m and degree n. Let r1 and r2 be two points with
spherical coordinates (r1, α1, β1) and (r2, α2, β2), respec-

tively. It follows that

1
|r1 − r2| =

⎧
⎪⎪⎨

⎪⎪⎩

∞∑
n=0

n∑
m=−n

Rm
n (r1)Sm

n (r2), |r1| < |r2|
∞∑

n=0

n∑
m=−n

Rm
n (r2)Sm

n (r1), |r1| > |r2|
(22)

In the above equation, the overhead bar means the com-
plex conjugate of a complex number.

Second addition theorem: If r1 and r2 are two vectors
such that |r1| > |r2|, then

Sm
n (r1 − r2) =

∞∑

n′=0

n′∑

m′=−n′
Rm′

n′ (r2)S
m+m′
n+n′ (r1) (23)

Third addition theorem: If r1 and r2 are two arbitrary
vectors, then

Rm
n (r1 − r2) =

n∑

n′=0

n′∑

m′=−n′
Rm′

n′ (−r2)R
m−m′
n−n′ (r1) (24)

Instead of treating interactions with each of the dis-
tant nodes individually, the FMM computes cell–cell
interactions. Consider two cells Ca and Cb, which con-
tain Na and Nb nodes, respectively. The computational
complexity of a standard algorithm for the mutual inter-
actions between the two groups is of order O(Na × Nb)
(see Fig. 1a). In the cell-cell strategy, it is reduced to
O(Na + Nb) (see Fig. 1b).

Substituting Eq. (3) into Eq. (18) and using the first
addition theorem (see Fig. 1c), with the summation over
the nodes included in Cb, we obtain

Nb∑

J=1

∫

�I

φs
JvI(Q)x′

Jd�

=
∞∑

n=0

n∑

m=−n

∫

�I

1
4π

Sm
n (O2Q)vI(Q)d�Mm

n (O2)

(25)

where the coefficients of multipole expansion Mm
n (O2) is

defined by

Mm
n (O2) =

Nb∑

J=1

Rm
n (O2sj)x′

J (26)

Using further the second addition theorem, Eq. (25)
becomes

Nb∑

J=1

∫

�I

φs
JvI(Q)x′

Jd�

=
∞∑

n′=0

n′∑

m′=−n′

∫

�I

1
4π

Rm′
n′ (O1Q)vI(Q)d�Lm′

n′ (O1) (27)
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Fig. 1 Interaction between two cells

where the coefficients of local expansion Lm′
n′ (O1) is given

by

Lm′
n′ (O1) =

∞∑

n=0

n∑

m=−n

(−1)n′
Sm+m′

n+n′ (O1O2)Mm
n (Q2) (28)

Equation (28) is known as the multipole to local
(M2L) translation, as it transforms the coefficients of

multipole expansion of Cb to the coefficients of local
expansion of Ca.

Suppose that Ca and Cb are obtained by subdividing
other two larger cells Cp

a and Cp
b, known as the parent

cells of Ca and Cb, respectively. Assume that Cp
a and Cp

b
are still far away from each other (see Fig. 1d). We can
then transform the coefficients of multipole expansion of
Cb to that of Cp

b (M2M) using the third addition theo-
rem, transform the coefficients of multipole expansion of
Cp

b to local moments of Cp
a (M2L), and finally to coeffi-

cients of local expansion of Ca (L2L) using the third
addition theorem again. Therefore, Eq. (28) becomes

Lm′
n′ (O1) =

∞∑

n=0

n∑

m=−n

Rm−m′
n−n′ (O′

1O2)Lm
n (Q′

1) (29)

and

Lm
n (O′

1) =
∞∑

n′=0

n′∑

m′=−n′
(−1)nSm+m′

n+n′ (O′
1O′

2)M
m′
n′ (Q′

2)

(30)

Mm′
n′ (Q′

2) =
∞∑

n=0

n∑

m=−n

Rm
n (O′

2O2)M
m−m′
n−n′ (Q2) (31)

The above process can be recursively repeated until
the root cell that contains the entire computational
domain. In the above process, the addition theorems
are used to separate the source and target points in the
fundamental solution and the pair of points in the solid
spherical harmonics, so that the coefficients of multipole
expansion and local expansion are related only to the
individual cells. Therefore, these coefficients can be cal-
culated independently and can be aggregated into ones
to represent temperature due to ever larger groups of
nodes. Moreover, once calculated, they can be reused
for other cell–cell interactions.

3.2 Tree construction and FMM algorithm

In the previous section, we have described the process of
cell–cell interaction. We have seen that the two points in
two-point functions can be separated freely by addition
theorems. All the resulted coefficients of expansion can
be calculated independently. This allows for the freedom
to arrange these computations in order to achieve better
efficiency. In the FMM, actually, the cell–cell interaction
is not performed separately for each pair of well-sepa-
rated cells. An elaborate algorithm has been designed.
This algorithm is facilitated by a tree data structure,
which hierarchically decomposes the entire region into
cells at different levels.

The standard FMM algorithm uses an oct-tree. The
entire computational domain is assumed to lie inside
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a cube, which is referred as the root cube at level 0.
The oct-tree is constructed by recursively subdividing
the cubes into eight sub-cubes by splitting each cube at
the geometrically central point. The cubes at level l + 1
are obtained from cubes at level l, where the eight sub-
cubes at level l + 1 are considered children of the cube
at level l. The subdivision continues until cubes contain
less than a given number of particles (boundary nodes
in HdBNM). If a child cube does not contain any node
(that is, it is empty), it is deleted.

With the tree, the FMM consists of two basic steps:
upward pass and downwards pass. During the upward
pass, the coefficients of multipole expansion are summed
from its children using the M2M translation for each
non-leaf cube. In the downwards pass, the tree is tra-
versed from the root to leaves to compute the coefficients
of local expansion. For each Cube C, these coefficients
are the sums of two parts. Firstly, the L2L translation col-
lects the coefficients of C’s parent. Secondly, the M2L
translation collects the coefficients of multipole expan-
sion of the cubes which are the children of the neighbors
of C’s parent but are not adjacent to C (these cubes com-
pose the interaction list of C). Finally, for each leaf, the
far interaction, which is evaluated using the coefficients
of local expansion at this cube is combined with the near
interaction evaluated by iterating over all the source
nodes in the neighborhood of the leaf cube to obtain the
entire sum in Eq. (18).

4 Numerical results

In this section, we first use a numerical example to check
the accuracy and efficiency of the FMM, then by employ-
ing the algorithms we have developed, study the thermal
properties of CNT-based composites.

4.1 Accuracy and efficiency of FMM

The accuracy of FMM is determined by the number of
terms, p, used in the multipole expansions. One of the
advantages of FMM is that it bounds the error analyti-
cally. As we can determine how many terms are required
in a multipole expansion to achieve a certain guaran-
teed level of accuracy, the FMM can be arbitrarily accu-
rate. Because we will study the thermal properties of
CNT-based composites by analyzing a Representative
Volume Element (RVE) of the composites in the next
subsection, we use a similar RVE embedded with a num-
ber of cavities of curved tube-like shapes to examine
the accuracy of the FMM. Figure 2 shows the geom-
etry and dimensions. As there is no analytical solution
existing for the simplified model, we consider a potential

Fig. 2 Dimensions of a nanoscale RVE

problem, and impose Dirichlet boundary condition on
all the surfaces, including that of the cavities, according
to the following exact solution:

φ = x3 + y3 + z3 − 3yx2 − 3xz2 − 3zy2 (32)

Then solve the problem using Eqs. (6) and (7). This set
up cannot actually check the accuracy of the simplified
model combined with FMM but the FMM, only. The
simplified mathematical model has been rigorously vali-
dated in [11]. The relative error is evaluated over all the
boundary nodes using a ‘global’ L2 norm error defined
as

e = 1
|q|max

√√√√ 1
N

N∑

i=1

(
q(e)

i − q(n)
i

)2 (33)

where |q|max is the maximum nodal value of normal flux,
the superscripts (e) and (n) refer to the exact and numer-
ical solutions, respectively.

We have performed computations for four sets of
node arrangements, namely 24,071, 47,032, 94,728 and
187,552 nodes uniformly distributed on the inner and
outer surfaces of the domain. We truncate all the infi-
nite expansions after p = 10, set the maximum number
of boundary nodes in a leaf box to be 60, and termi-
nate the iteration when the relative error norm is less
than 10−5. All the computations, including that will be
presented in the next subsection, are performed on a
desktop computer with an Intel(R) Pentium(R) 4 CPU
(1.99 GHz).

The relative errors of normal flux computed by Eq.
(33) are presented in Fig. 3 as a function of the number
of nodes used in the computations. With an increasing
number of nodes, higher accuracy is obtained. The run
time for solving the system equation is plotted against
the number of nodes in Fig. 4, which clearly shows a
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Fig. 3 Relative error for normal flux

Fig. 4 CPU seconds for solving system equation

nearly linear complexity of the developed algorithm.
The high accuracy and efficiency for this example sug-
gests that the proposed formulation and its FMM imple-
mentation are correct and effective. This example also
demonstrates that the proposed method is capable of
performing large-scale computations, because without
FMM, the largest number of node of a problem that can
be solved by the HdBNM is about 5,000, only. In the
next subsection, we will employ it for advanced analysis
of the CNT-based composites.

4.2 Study on the thermal behavior of CNT-based
composites

In this subsection, we use a RVE to study the CNT-
based composites for their thermal properties. The outer
dimensions of the RVE are kept the same as the one used
in the previous subsection (see Fig. 2), but we will change
the number and shape of the CNTs that are embedded in
the RVE. Based on the simplified mathematical model,
the CNTs are treated as cavities of which the surfaces
are identical to the outer surfaces of the CNTs, and a
constant temperature is constrained at each cavity. The
heat conductivity, κp, used for the polymer (polycarbon-
ate) is 0.37 W/m K, and for CNT 1,750 W/m K. Uniform

temperatures of 300 and 200 K are imposed at the two
square faces, respectively, and heat flux free at other four
rectangular faces. These boundary conditions allow us
to estimate the equivalent heat conductivity of the com-
posite in the axial direction. Using Fourier’s law, the for-
mula for the equivalent heat conductivity can be written
as

κ = − qL
	φ

(34)

where κ represents the heat conductivity; q is the aver-
age value of normal flux at the two end face, obtained
by HdBNM; L is the length of the RVE in the axial
direction and 	φ the temperature difference between
the two square faces.

Figure 5 gives 7 sets of 3 RVEs. The radii of CNTs
(R = 5 nm) are kept constant, while their lengths and
shapes, together with the number of CNTs and their
alignments, varies for different cases. The locations and
orientations of the CNTs are “random”. The word ran-
dom is quoted because the variations of location and
orientation are limited to a small extent that each CNT
remains in a local box that includes the CNT to avoid
contact of the CNTs. Each set contains CNTs of a spe-
cific shape and alignment. Specifically, sets 1 (RVE (1) to
(3)), 2 (RVE (4) to (6)) and 3 (RVE (7) to (9)) deal with
CNTs of “C” shape, set 4 (RVE (10) to (12)) sinusoidal
shape, sets 5 (RVE (13) to (15)) and 6 (RVE (16) to (18))
spiral shape and set 7 (RVE (19) to (21)) straight CNTs.
Within each set, the first RVE contains a small number
but long CNTs. From the first to the third, the number
of CNTs increases while the lengths of CNTs decrease.

Results of our experiments are summarized in Table 1.
The first and second columns of the table are the set
number and the RVE number; the third, fourth and fifth
columns list the average length in nanometer, the total
number and the volume fraction of the CNTs. In the
sixth and seventh columns, the total number of nodes
used for the simulation and the equivalent heat con-
ductivity (in W/m K) are listed, respectively. To assess
the enhancement effectiveness, we use as a criterion the
ratio of the equivalent heat conductivity to the volume
percentage of CNT. The ratio is presented in the eighth
column of the table. The ninth column lists the CPU
times in second used for solving the system equation.

From the results it is seen that, within each set, both
the equivalent heat conductivity and the ratios κ/ν of
the first RVE are significantly larger than that of the
second and third RVEs, although the volume fraction is
relatively much smaller. This suggests that CNT length
is a decisive factor for the enhanced thermal property
of the composite, while the volume fraction of CNT is
much less important. The most effective way to increase
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Fig. 5 RVEs with various
alignments of CNTs

the heat conductivity of the composite is to use longer
CNTs.

It is also noticed that the shape of CNTs strongly
affects the overall properties of the composites. Com-
paring the results of different sets, we found that the
“C” shape is the best.

The CPU seconds listed in the ninth column of Table 1
is plotted in Fig. 6 against the number of nodes. Again,
we see that the time complexity of the FMM is approxi-
mately linear with respect to the number of nodes.

5 Concluding remarks

In this paper, formulations of a simplified mathematical
model for simulation of thermal behaviors of CNT-based

composites are presented. The model provides remark-
able improvement in computational efficiency. The
FMM is employed to further reduce the computational
costs. Numerical examples have demonstrated that the
fast HdBNM is an effective algorithm and has promising
applications in large-scale analyses of CNT composites,
especially when the CNTs involved have complex geom-
etries.

A variety of RVEs containing different numbers of
CNTs have been studied in an attempt to investigate
the influence of CNT length, distribution, orientation
and volume fraction on the overall thermal properties
of the composites. We found that all the above factors
have strong impact on the overall properties of the com-
posites. However the average length of the CNTs is
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Fig. 5 continued

Table 1 Numerical results obtained for RVEs

Set no. RVE no. Average length Number of CNTs Fraction v (%) Number of nodes k k/v Run time

(1) 1117.3 3 0.59 40, 614 8.472 1435.9 232
1 (2) 312.3 24 1.09 54, 320 2.432 223.1 1341

(3) 139.8 160 3.78 110, 102 1.356 35.9 5865
(4) 728.9 6 0.61 46, 824 5.010 821.4 389

2 (5) 342.7 32 1.77 71, 908 3.937 222.4 2042
(6) 149.5 160 5.07 134, 756 2.833 55.9 6880
(7) 728.9 2 0.28 40, 816 1.773 633.1 201

3 (8) 342.7 16 1.11 68, 563 2.086 187.9 2447
(9) 162.9 90 2.97 147, 496 1.745 58.8 8320
(10) 437.7 12 1.29 50, 148 1.186 91.9 1591

4 (11) 205.1 45 2.23 66, 740 1.097 49.2 2703
(12) 80.2 160 3.06 88, 962 0.760 24.8 5708
(13) 516.6 6 0.76 39, 780 1.551 205.5 343

5 (14) 462.5 15 1.69 51, 006 1.184 70.1 1321
(15) 149.1 90 3.17 72, 876 0.917 28.9 3237
(16) 537.9 5 0.66 38, 556 0.796 121.3 416

6 (17) 239.2 40 2.31 59, 556 1.094 47.34 2591
(18) 149.6 135 4.84 93, 936 1.709 35.31 4266
(19) 790.0 4 0.77 39, 852 2.990 387.4 581

7 (20) 194.7 64 2.99 68, 954 1.790 59.85 4234
(21) 77.0 360 6.33 128, 592 1.204 19.02 9504
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Fig. 6 CPU seconds for
solving system equation

substantially decisive for enhancing the thermal prop-
erties of the composite, while the volume (or weight)
fraction of CNT is less important. For a specific length
of CNTs, the “C” shape is suggested to be the most
effective shape for thermal property enhancement.
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